organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,8-Dihydroxy-1-(3-methylbut-2-enyl)-9H-carbazole-3-carbaldehyde

Hoong-Kun Fun,^a* Surat Laphookhieo,^b Wisanu Maneerat^b and Suchada Chantrapromma^c*

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bSchool of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th

Received 29 August 2007; accepted 31 August 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.116; data-to-parameter ratio = 14.2.

The title naturally occurring carbazole compound, C₁₈H₁₇NO₃, known as heptazoline, was isolated from Micromelum minutum. The carbazole ring system is essentially planar. The hydroxy and aldehyde substituent groups lie in the plane of the benzene ring, while the 3-methyl-2-butenyl group is anticlinal, with a dihedral angle of 70.26 $(7)^{\circ}$ between it and the mean plane of the carbazole. In the crystal structure, an intramolecular $O-H \cdots O$ interaction generates an S(6) ring motif, while an intermolecular O-H···O interaction forms dimers that link into chains along the [401] direction. The structure is further stabilized by weak intramolecular C-H···O interactions and π - π interactions [centroid-to-centroid distances 3.5901 (8) and 3.5899 (8) Å].

Related literature

For background to the biological activity of alkaloids, flavonoids and coumarins, see, for example: Das et al. (1984); Ito et al. (2000); Nakahara et al. (2002); Rahmani et al. (2003); Sohrab et al. (2004); Tantishaiyakul et al. (1986); Tantivatana et al. (1983). For related structures, see, for example: Duan et al. (2005); Huang et al. (2005); Li et al. (2006). Bernstein et al. (1995) provide information on hydrogen-bond motifs. For reference structural data, see Allen et al. (1987).

Experimental

Crystal data

C₁₈H₁₇NO₃ V = 1427.88 (7) Å³ $M_r = 295.33$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 4.7749 (1) Å $\mu = 0.09 \text{ mm}^{-1}$ b = 18.8511 (6) Å T = 100.0 (1) K c = 16.0164 (5) Å $0.52 \times 0.18 \times 0.09 \text{ mm}$ $\beta = 97.931 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.953, T_{\max} = 0.992$

Refinement

ł v

S 3

$R[F^2 > 2\sigma(F^2)] = 0.044$	267 parameters
$VR(F^2) = 0.116$	All H-atom parameters refined
S = 1.10	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
795 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ \AA}^{-3}$

15047 measured reflections

 $R_{\rm int} = 0.033$

3795 independent reflections 2840 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H101 \cdots O2$	0.95 (2)	1.75 (2)	2.6274 (13)	151.4 (18)
$03 - H103 \cdots O2^{i}$	0.96 (2)	1.77 (2)	2.7139 (14)	166.9 (19)
$C13 - H13B \cdots O1$	1.011 (16)	2.391 (16)	2.8469 (17)	106.4 (11)

Symmetry code: (i) $x + 2, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

SL thanks the Thailand Research Fund (TRF) and the Commission on Higher Education (CHE) for research grant No. MRG5080135. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/ PFIZIK/635003/A118.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2348).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, S., Baruah, R. H., Sharma, R. P., Barua, J. N., Kulanthaivel, P. & Herz, W. (1984). Phytochemistry, 23, 2317–2321.
- Duan, X.-M., Huang, P.-M., Zheng, P.-W. & Li, J. (2005). Acta Cryst. E61, 03361-03363
- Huang, P.-M., Li, J.-S., Duan, X.-M., Zeng, T. & Yan, X.-L. (2005). Acta Cryst. E61, o2366-o2367.

- Ito, C., Otsuka, T., Ruangrungsi, N. & Furukawa, H. (2000). Chem. Pharm. Bull. 48, 334–338.
- Li, N., Huang, P.-M., Xiong, X.-L. & Cai, Q. (2006). Acta Cryst. E62, o1539– 01540.
- Nakahara, K., Trakoontivakorn, G., Alzoreky, N. S., Ono, H., Onishi-Kameyama, M. & Yoshida, M. (2002). J. Agric. Food Chem. 50, 4796–4802.
- Rahmani, M., Susidarti, R. A., Ismail, H. B. M., Sukari, M. A., Hin, T.-Y. Y., Lian, G. E. C., Ali, A. M., Kulip, J. & Waterman, P. G. (2003). *Phytochemistry*, 64, 873–877.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sohrab, M. H., Chowdhury, R., Hasan, C. M. & Rashid, M. A. (2004). *Biochem.* Syst. Ecol. **32**, 829–831.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tantishaiyakul, V., Pummangura, S., Chaichantipyuth, C., Ma, W. W. & McLaughlin, J. L. (1986). J. Nat. Prod. 49, 180–181.
- Tantivatana, P., Ruana, G. M., Vaisiriroj, V., Lankin, D. C., Bhacca, M. C., Borris, R. P., Cordell, G. A. & Johnson, L. F. (1983). J. Org. Chem. 48, 268– 270.

supplementary materials

Acta Cryst. (2007). E63, o3964-o3965 [doi:10.1107/S1600536807042626]

2,8-Dihydroxy-1-(3-methylbut-2-enyl)-9H-carbazole-3-carbaldehyde

H.-K. Fun, S. Laphookhieo, W. Maneerat and S. Chantrapromma

Comment

Plants of the genus Micromelum (Rutaceae) are known to be rich sources of alkaloids (Nakahara *et al.*, 2002), coumarins (Rahmani *et al.*, 2003; Ito *et al.*, 2000; Tantishaiyakul *et al.*, 1986; Tantivatana *et al.*, 1983) and flavonoids (Das *et al.*, 1984; Sohrab *et al.*, 2004). Some of these compounds show anti-cancer activity (Tantishaiyakul *et al.*, 1986; Tantivatana *et al.*, 1983). *Micromelum minutum* known locally in Thailand as "Hat-Sa-Khun", is a small to medium-sized tree or shrub found widespread in South-East Asian countries. The leaves of this plant are traditionally used in the treatment of fever and giddiness and a poultice of the boiled roots is used for ague (Rahmani *et al.*, 2003). In our search for bioactive compounds from Thai medicinal plant, we herein report the crystal structure of the title compound, which was isolated from the stem barks of *M. minutum* collected from Nongkhai province in the northeasthern of Thailand.

In the structure of the title compound (Fig. 1), the carbazole ring system (C1–C12/N1) is essentially planar with the maximum deviation of -0.013 (1) Å for atom N1. The hydroxy and aldehyde substituent groups lie in the plane of the benzene ring and an intramolecular O1—H1O1···O2 hydrogen bond between the aldehyde and one of the hydroxy groups helps maintain the planarity of the structure. The orientation of the 3-methyl-2-butenyl substituent group with respect to the C1–C6 benzene ring is indicated by the torsion angle C2/C1/C13/C14 of 130.72 (13)°, showing an anti-clinal conformation. The dihedral angle between the 3-methyl-2-butenyl group and the mean plane of carbazole is 70.26 (7) Å. Bond lengths and angles in the title compound are within normal ranges (Allen *et al.*, 1987) and comparable to related structures (Duan *et al.*, 2005; Huang *et al.*, 2005; Li *et al.*, 2006). An O1—H1O1···O2 intramolecular interaction generates S(6) ring motif (Bernstein *et al.*, 1995). In addition, the weak C13—H13B···O1 intramolecular interaction generates S(5) ring motif. O3—H1O3···O2 intermolecular interactions connect the molecules into dimers (Fig. 2). These dimers form chains along the [401] direction (Fig. 2). The crystal is stabilized by O—H···O hydrogen bonds and weak C—H···O intramolecular interactions were also observed with the $Cg_1···Cg_2$ distances of 3.5901 (8) Å (symmetry code; 1 + x, *y*, *z*) and 3.5899 (8) Å (symmetry code; -1 + x, *y*, *z*), *Cg*₁ and *Cg*₂ are the centroids of C1–C6 and C6–C5–C12–C7–N1 rings.

Experimental

Stem barks of *M. minutum* (12 kg) were extracted with hexane–EtOAc (1:1) over the period of 3 days at room temperature. The mixture was filtered and concentrated under reduced pressure to provide the crude extract (58.3 g). This crude extract was subjected to quick column chromatography (QCC) over silica gel and eluted with a gradient of EtOAc–hexane to afford 60 factions (A1–A60). Fractions A29–A30 (617 mg) was subjected to repeated CC using the gradient of CH_2Cl_2 (70% CH_2Cl_2 in hexane to 100% CH_2Cl_2) to give the title compound (15.2 mg). Colorless block-shaped single crystals of the title compound were obtained by recrystallization from CH_2Cl_2 –hexane (2:1 ν/ν) solution, Mp 487–489 K.

Refinement

All H atoms were located from the difference map and refined isotropically.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme.

Fig. 2. Crystal packing of the title compound viewed approximately along the c axis. O—H···O hydrogen bonds are shown as dashed lines.

2,8-Dihydroxy-1-(3-methylbut-2-enyl)-9H-carbazole-3-carbaldehyde

Crystal data	
C ₁₈ H ₁₇ NO ₃	$F_{000} = 624$
$M_r = 295.33$	$D_{\rm x} = 1.374 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Melting point: 487-489 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 4.7749 (1) Å	Cell parameters from 3795 reflections
<i>b</i> = 18.8511 (6) Å	$\theta = 1.7 - 29.0^{\circ}$
c = 16.0164 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 97.931 \ (2)^{\circ}$	T = 100.0 (1) K.
$V = 1427.88 (7) \text{ Å}^3$	Block, colourless
Z = 4	$0.52\times0.18\times0.09~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	3795 independent reflections
Radiation source: fine-focus sealed tube	2840 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 29.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -24 \rightarrow 25$
$T_{\min} = 0.953, T_{\max} = 0.992$	$l = -21 \rightarrow 21$
15047 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	All H-atom parameters refined
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.2314P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
3795 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
267 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.1526 (2)	0.39677 (5)	0.42061 (6)	0.0216 (2)
H1O1	-0.288 (4)	0.3808 (11)	0.3755 (13)	0.057 (6)*
O2	-0.43458 (19)	0.31436 (5)	0.30620 (6)	0.0224 (2)
O3	1.1123 (2)	0.23309 (6)	0.69986 (6)	0.0229 (2)
H1O3	1.265 (5)	0.2095 (11)	0.7341 (13)	0.059 (6)*
N1	0.6366 (2)	0.28325 (6)	0.58847 (7)	0.0174 (2)
H1N1	0.695 (4)	0.3170 (10)	0.6218 (11)	0.035 (5)*
C1	0.2402 (3)	0.34865 (7)	0.50719 (8)	0.0167 (3)
C2	0.0161 (3)	0.33985 (7)	0.44266 (8)	0.0167 (3)
C3	-0.0384 (3)	0.27355 (7)	0.40085 (8)	0.0174 (3)
C4	0.1316 (3)	0.21427 (7)	0.42481 (8)	0.0173 (3)
H4A	0.093 (3)	0.1682 (8)	0.3955 (10)	0.021 (4)*
C5	0.3561 (3)	0.22080 (7)	0.48859 (7)	0.0164 (3)
C6	0.4046 (3)	0.28848 (7)	0.52797 (7)	0.0162 (3)
C7	0.7370 (3)	0.21414 (7)	0.59080 (8)	0.0175 (3)
C8	0.9687 (3)	0.18691 (8)	0.64334 (8)	0.0189 (3)
C9	1.0343 (3)	0.11657 (8)	0.63314 (8)	0.0218 (3)

supplementary materials

H9A	1.198 (3)	0.0965 (8)	0.6684 (10)	0.025 (4)*
C10	0.8714 (3)	0.07462 (8)	0.57257 (9)	0.0230 (3)
H10A	0.923 (3)	0.0249 (9)	0.5670 (10)	0.026 (4)*
C11	0.6392 (3)	0.10177 (8)	0.52068 (8)	0.0202 (3)
H11A	0.524 (3)	0.0717 (8)	0.4791 (9)	0.021 (4)*
C12	0.5716 (3)	0.17311 (7)	0.52989 (8)	0.0174 (3)
C13	0.3057 (3)	0.41821 (8)	0.55191 (8)	0.0211 (3)
H13A	0.480 (3)	0.4407 (8)	0.5317 (10)	0.027 (4)*
H13B	0.147 (3)	0.4527 (9)	0.5336 (10)	0.030 (4)*
C14	0.3473 (3)	0.41179 (8)	0.64689 (8)	0.0213 (3)
H14A	0.218 (3)	0.3766 (9)	0.6707 (10)	0.027 (4)*
C15	0.5236 (3)	0.44972 (8)	0.70103 (8)	0.0210 (3)
C16	0.5300 (4)	0.44116 (10)	0.79470 (9)	0.0302 (4)
H16A	0.462 (4)	0.4849 (10)	0.8203 (11)	0.036 (5)*
H16B	0.399 (3)	0.4005 (9)	0.8061 (10)	0.029 (4)*
H16C	0.730 (4)	0.4325 (10)	0.8242 (12)	0.046 (5)*
C17	0.7187 (3)	0.50577 (9)	0.67578 (9)	0.0258 (3)
H17A	0.727 (4)	0.5072 (9)	0.6130 (12)	0.041 (5)*
H17B	0.652 (4)	0.5541 (10)	0.6914 (11)	0.037 (5)*
H17C	0.913 (4)	0.4996 (10)	0.7068 (11)	0.044 (5)*
C18	-0.2709 (3)	0.26594 (8)	0.33395 (8)	0.0200 (3)
H18A	-0.292 (3)	0.2171 (8)	0.3105 (9)	0.020 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0183 (5)	0.0200 (5)	0.0242 (5)	0.0030 (4)	-0.0051 (4)	0.0011 (4)
02	0.0174 (5)	0.0263 (6)	0.0214 (5)	0.0001 (4)	-0.0044 (4)	0.0024 (4)
O3	0.0193 (5)	0.0265 (6)	0.0202 (5)	0.0007 (4)	-0.0066 (4)	0.0016 (4)
N1	0.0158 (5)	0.0189 (6)	0.0161 (5)	0.0002 (5)	-0.0026 (4)	-0.0003 (5)
C1	0.0151 (6)	0.0187 (7)	0.0156 (6)	-0.0006 (5)	-0.0002 (5)	0.0012 (5)
C2	0.0146 (6)	0.0180 (7)	0.0171 (6)	0.0010 (5)	0.0009 (5)	0.0029 (5)
C3	0.0141 (6)	0.0228 (7)	0.0147 (6)	-0.0022 (5)	-0.0001 (5)	0.0014 (5)
C4	0.0167 (6)	0.0188 (7)	0.0161 (6)	-0.0023 (5)	0.0013 (5)	-0.0005 (5)
C5	0.0152 (6)	0.0190 (7)	0.0150 (6)	-0.0001 (5)	0.0016 (5)	0.0010 (5)
C6	0.0142 (6)	0.0209 (7)	0.0133 (5)	-0.0015 (5)	0.0008 (5)	0.0010 (5)
C7	0.0160 (6)	0.0203 (7)	0.0164 (6)	0.0007 (5)	0.0029 (5)	0.0022 (5)
C8	0.0162 (6)	0.0252 (8)	0.0148 (6)	0.0001 (5)	0.0003 (5)	0.0024 (5)
C9	0.0188 (7)	0.0268 (8)	0.0194 (6)	0.0057 (6)	0.0018 (5)	0.0063 (6)
C10	0.0266 (7)	0.0204 (8)	0.0224 (6)	0.0057 (6)	0.0052 (6)	0.0024 (6)
C11	0.0215 (7)	0.0212 (8)	0.0176 (6)	0.0008 (6)	0.0021 (5)	0.0007 (5)
C12	0.0150 (6)	0.0218 (7)	0.0152 (5)	0.0007 (5)	0.0017 (5)	0.0025 (5)
C13	0.0234 (7)	0.0194 (8)	0.0190 (6)	0.0003 (6)	-0.0028 (5)	0.0000 (5)
C14	0.0227 (7)	0.0200 (8)	0.0209 (6)	0.0008 (6)	0.0021 (5)	0.0002 (5)
C15	0.0229 (7)	0.0206 (8)	0.0187 (6)	0.0038 (6)	-0.0004 (5)	-0.0017 (5)
C16	0.0418 (10)	0.0292 (9)	0.0188 (7)	-0.0012 (8)	0.0013 (6)	-0.0026 (6)
C17	0.0265 (8)	0.0260 (9)	0.0232 (7)	-0.0029 (6)	-0.0027 (6)	-0.0025 (6)
C18	0.0179 (7)	0.0228 (8)	0.0189 (6)	-0.0032 (6)	0.0011 (5)	0.0009 (5)

Geometric parameters (Å, °)

O1—C2	1.3587 (16)	C9—C10	1.401 (2)
01—H101	0.95 (2)	С9—Н9А	0.974 (16)
O2—C18	1.2433 (17)	C10-C11	1.389 (2)
O3—C8	1.3698 (17)	C10—H10A	0.977 (17)
O3—H1O3	0.96 (2)	C11—C12	1.396 (2)
N1—C6	1.3707 (16)	C11—H11A	0.983 (15)
N1—C7	1.3870 (18)	C13—C14	1.5115 (18)
N1—H1N1	0.851 (18)	C13—H13A	1.027 (16)
C1—C2	1.3914 (17)	C13—H13B	1.010 (17)
C1—C6	1.3933 (18)	C14—C15	1.3305 (19)
C1—C13	1.5062 (19)	C14—H14A	1.015 (16)
С2—С3	1.4249 (19)	C15—C17	1.501 (2)
C3—C4	1.4034 (19)	C15—C16	1.5049 (19)
C3—C18	1.4396 (18)	C16—H16A	0.994 (18)
C4—C5	1.3803 (17)	C16—H16B	1.022 (17)
C4—H4A	0.993 (16)	C16—H16C	1.02 (2)
C5—C6	1.4279 (19)	C17—H17A	1.012 (18)
C5—C12	1.4550 (18)	С17—Н17В	1.007 (19)
С7—С8	1.3922 (18)	С17—Н17С	0.996 (19)
C7—C12	1.4005 (18)	C18—H18A	0.993 (16)
C8—C9	1.377 (2)		
C2—O1—H1O1	105.3 (13)	С9—С10—Н10А	118.7 (9)
C8—O3—H1O3	110.8 (12)	C10-C11-C12	117.98 (13)
C6—N1—C7	109.23 (11)	C10-C11-H11A	121.2 (9)
C6—N1—H1N1	123.5 (12)	C12—C11—H11A	120.8 (9)
C7—N1—H1N1	127.0 (12)	C11—C12—C7	119.30 (12)
C2—C1—C6	115.52 (12)	C11—C12—C5	134.97 (12)
C2—C1—C13	123.01 (12)	C7—C12—C5	105.72 (12)
C6—C1—C13	121.47 (11)	C1—C13—C14	113.50 (12)
O1—C2—C1	117.81 (12)	C1—C13—H13A	109.5 (9)
O1—C2—C3	120.49 (11)	C14—C13—H13A	110.5 (9)
C1—C2—C3	121.70 (12)	C1—C13—H13B	108.9 (9)
C4—C3—C2	120.58 (12)	C14—C13—H13B	109.4 (9)
C4—C3—C18	118.80 (12)	H13A—C13—H13B	104.6 (12)
C2—C3—C18	120.61 (12)	C15—C14—C13	126.62 (13)
C5—C4—C3	119.48 (12)	C15—C14—H14A	117.9 (9)
С5—С4—Н4А	120.1 (9)	C13—C14—H14A	115.3 (9)
С3—С4—Н4А	120.4 (9)	C14—C15—C17	124.27 (13)
C4—C5—C6	117.96 (12)	C14—C15—C16	121.07 (14)
C4—C5—C12	135.20 (13)	C17—C15—C16	114.60 (12)
C6—C5—C12	106.84 (11)	C15—C16—H16A	111.0 (10)
N1—C6—C1	126.95 (12)	C15—C16—H16B	109.2 (9)
N1—C6—C5	108.30 (11)	H16A—C16—H16B	107.9 (13)
C1—C6—C5	124.75 (12)	C15—C16—H16C	111.5 (11)
N1—C7—C8	127.28 (12)	H16A—C16—H16C	106.2 (15)
N1—C7—C12	109.89 (11)	H16B—C16—H16C	110.9 (14)

supplementary materials

C8—C7—C12	122.83 (13)	С15—С17—Н17А	113.4 (10)
O3—C8—C9	126.08 (12)	С15—С17—Н17В	110.0 (10)
O3—C8—C7	116.65 (13)	H17A—C17—H17B	106.3 (14)
C9—C8—C7	117.26 (12)	С15—С17—Н17С	110.7 (11)
C8—C9—C10	120.79 (13)	H17A—C17—H17C	109.7 (14)
С8—С9—Н9А	118.8 (9)	H17B—C17—H17C	106.5 (14)
С10—С9—Н9А	120.4 (9)	O2—C18—C3	125.11 (13)
C11—C10—C9	121.84 (14)	O2—C18—H18A	121.3 (9)
C11—C10—H10A	119.4 (9)	C3—C18—H18A	113.6 (9)
C6—C1—C2—O1	179.32 (11)	C12—C7—C8—O3	179.74 (11)
C13—C1—C2—O1	-1.14 (18)	N1	-178.43 (12)
C6—C1—C2—C3	-0.31 (17)	C12—C7—C8—C9	0.49 (19)
C13—C1—C2—C3	179.23 (12)	O3—C8—C9—C10	-179.66 (12)
O1—C2—C3—C4	-178.56 (11)	C7—C8—C9—C10	-0.48 (19)
C1—C2—C3—C4	1.07 (19)	C8—C9—C10—C11	0.0 (2)
O1—C2—C3—C18	0.72 (18)	C9-C10-C11-C12	0.5 (2)
C1—C2—C3—C18	-179.66 (11)	C10-C11-C12-C7	-0.47 (18)
C2—C3—C4—C5	-1.02 (18)	C10-C11-C12-C5	178.79 (13)
C18—C3—C4—C5	179.70 (11)	N1-C7-C12-C11	179.07 (11)
C3—C4—C5—C6	0.25 (18)	C8—C7—C12—C11	-0.01 (19)
C3—C4—C5—C12	179.63 (13)	N1-C7-C12-C5	-0.38 (14)
C7—N1—C6—C1	178.76 (12)	C8—C7—C12—C5	-179.46 (11)
C7—N1—C6—C5	-1.12 (13)	C4—C5—C12—C11	1.0 (3)
C2-C1-C6-N1	179.65 (11)	C6-C5-C12-C11	-179.62 (14)
C13—C1—C6—N1	0.10 (19)	C4—C5—C12—C7	-179.72 (13)
C2—C1—C6—C5	-0.48 (18)	C6—C5—C12—C7	-0.30 (13)
C13—C1—C6—C5	179.97 (12)	C2-C1-C13-C14	130.72 (13)
C4—C5—C6—N1	-179.59 (10)	C6-C1-C13-C14	-49.76 (17)
C12-C5-C6-N1	0.87 (13)	C1-C13-C14-C15	146.11 (14)
C4—C5—C6—C1	0.52 (19)	C13-C14-C15-C17	-1.1 (2)
C12—C5—C6—C1	-179.02 (11)	C13-C14-C15-C16	175.88 (14)
C6—N1—C7—C8	179.98 (12)	C4—C3—C18—O2	-179.07 (12)
C6—N1—C7—C12	0.94 (14)	C2—C3—C18—O2	1.6 (2)
N1—C7—C8—O3	0.82 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H101···O2	0.95 (2)	1.75 (2)	2.6274 (13)	151.4 (18)
O3—H1O3···O2 ⁱ	0.96 (2)	1.77 (2)	2.7139 (14)	166.9 (19)
С13—Н13В…О1	1.011 (16)	2.391 (16)	2.8469 (17)	106.4 (11)
Symmetry codes: (i) $x+2$, $-y+1/2$, $z+1/2$.				

